

Is Now Part of

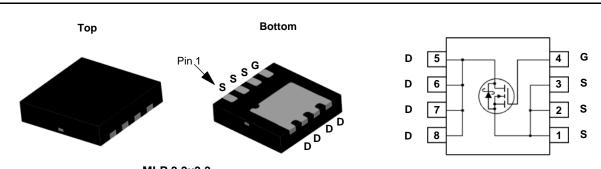
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

• Max $r_{DS(on)} = 6.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 14.8 \text{ A}$

FAIRCHILD


- Max $r_{DS(on)}$ = 7.1 m Ω at V_{GS} = 4.5 V, I_D = 12.4 A
- High performance technology for extremely low r_{DS(on)}
- Termination is Lead-free and RoHS Compliant

General Description

This FDMC7672S is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery packs.

Applications

- DC DC Buck Converters
- Notebook battery power mangement
- Load switch in Notebook

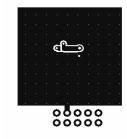
MLP 3.3x3.3

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol			Parameter		Ratings	Units
V _{DS}	Drain to So	urce Voltage			30	V
V _{GS}	Gate to Sou	urce Voltage			±20	V
	Drain Curre	ent -Continuous	T _C = 25 °C)	18	
I _D		-Continuous	T _A = 25 °C	C (Note 1a)	14.8	A
		-Pulsed			45	
E _{AS}	Single Puls	e Avalanche Energy		(Note 3)	60	mJ
D	Power Diss	ipation	T _C = 25 °	С	36	W
P _D	Power Diss	ipation	T _A = 25 °C	C (Note 1a)	2.3	vv
T _J , T _{STG}	Operating a	and Storage Junction Te	emperature Range		-55 to +150	°C
Thermal Ch						
$R_{ ext{ heta}JC}$	Thermal Re	esistance, Junction to C	Case		3.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Re	sistance, Junction to A	mbient	(Note 1a)	53	°C/W
Package M	arking and	Ordering Information	ation			
Davias M	a al al an an	Davias	Baakaga	Bool Size	Topo Width	Quantity

Device MarkingDevicePackageReel SizeTape WidthQuantityFDMC7672SFDMC7672SMLP 3.3X3.313 "12 mm3000 units

June 2014


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 10$ mA, referenced to 25 °C		12		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	mA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
On Chara	cteristics (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	1.2	1.6	3.0	V
$\frac{\Delta V_{\text{GS(th)}}}{\Delta T_{\text{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 10$ mA, referenced to 25 °C		-6		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 14.8 A		5.0	6.0	mΩ
		V _{GS} = 4.5 V, I _D = 12.4 A		6.1	7.1	
		V _{GS} = 10 V, I _D = 14.8 A T _J = 125 °C		5.9	9.0	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 14.8 A		78		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			1895	2520	pF
C _{oss}	Output Capacitance	── V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		770	1025	pF
C _{rss}	Reverse Transfer Capacitance			85	130	pF
Rg	Gate Resistance			1.2	3.2	Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			11	21	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 14.8 A,		4	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		26	42	ns
				-	4.0	

ld(on)	Turn-On Delay Time		11	21	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 14.8 A,	4	10	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	26	42	ns
t _f	Fall Time		3	10	ns
Qg	Total Gate Charge	$V_{GS} = 0 V$ to 10 V	30	42	nC
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V} \text{ V}_{DD} = 15 \text{ V}$	14	20	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 14.8 A	5.3		nC
Q _{gd}	Gate to Drain "Miller" Charge		4.0		nC

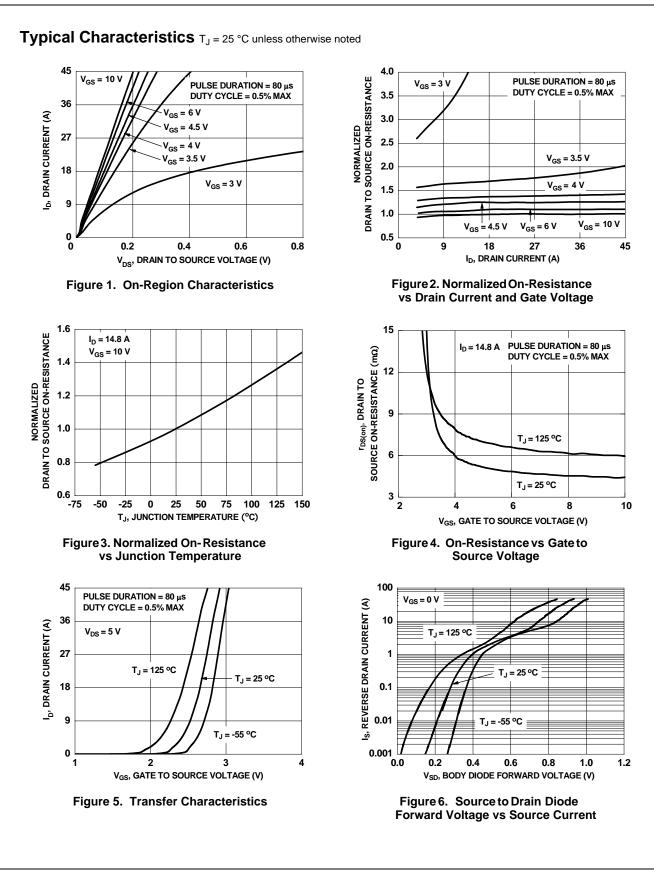
Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 14.8 A (Note 2)	0.8	1.3	V
	Source to Drain Diode Porward Voltage	$V_{GS} = 0 V, I_S = 1.9 A$ (Note 2)	0.5	1.2	
t _{rr}	Reverse Recovery Time	I _E = 14.8 A, di/dt = 300 A/μs	29	45	ns
Q _{rr}	Reverse Recovery Charge	$F = 14.8 \text{ A}, \text{ al/at} = 300 \text{ A/}\mu\text{s}$	28	44	nC
Notes:		u ii	4		

1. R_{bJA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{bJC} is guaranteed by design while R_{bCA} is determined by the user's board design.

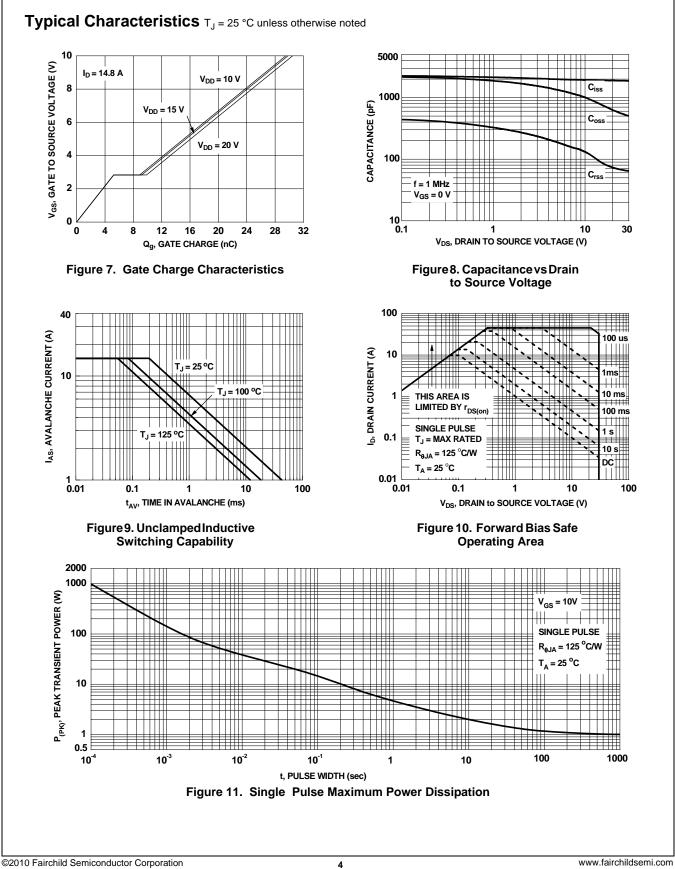
a. 53 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

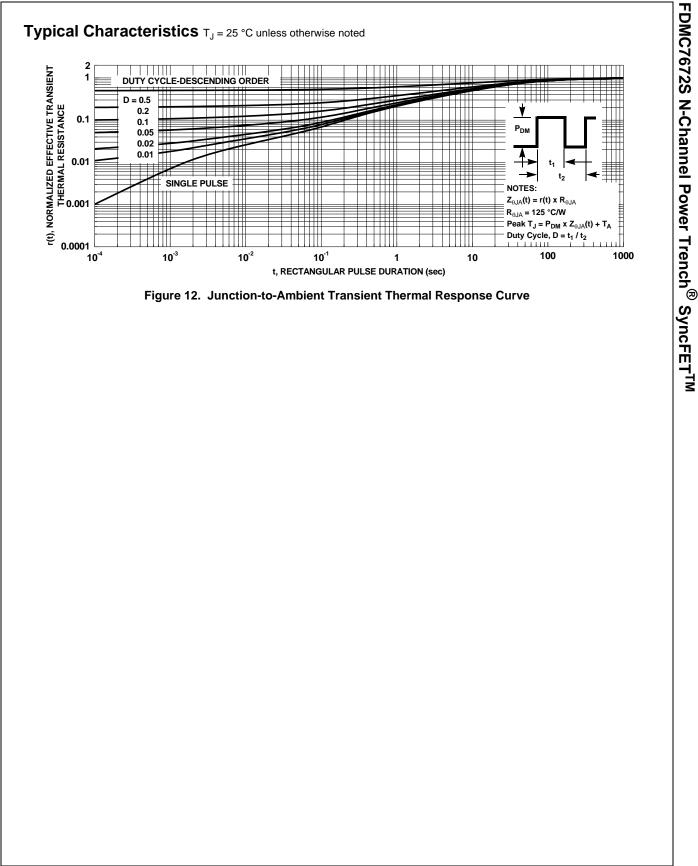

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

3. E_{AS} of 60 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 11 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 3 mH, I_{AS} = 4.8 A.

©2010 Fairchild Semiconductor Corporation FDMC7672S Rev.C4


www.fairchildsemi.com

FDMC7672S N-Channel Power Trench[®] SyncFETTM


©2010 Fairchild Semiconductor Corporation FDMC7672S Rev.C4

www.fairchildsemi.com

FDMC7672S N-Channel Power Trench[®] SyncFETTM

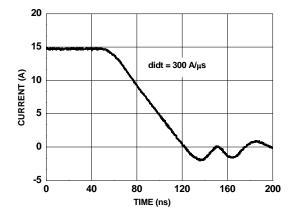
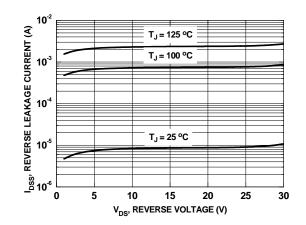
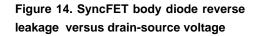
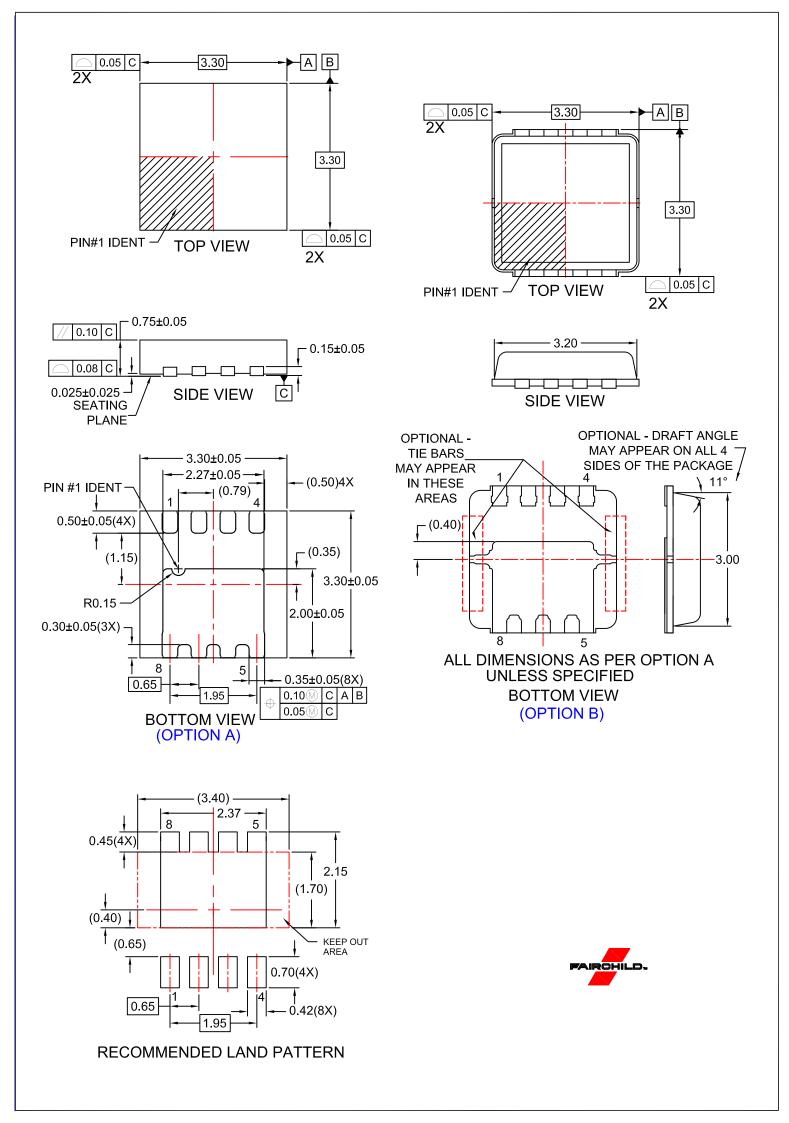
FDMC7672S Rev.C4

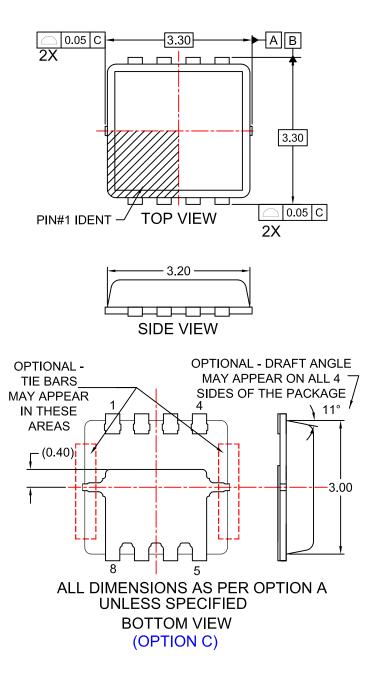
FDMC7672S N-Channel Power Trench[®] SyncFETTM

Typical Characteristics (continued)

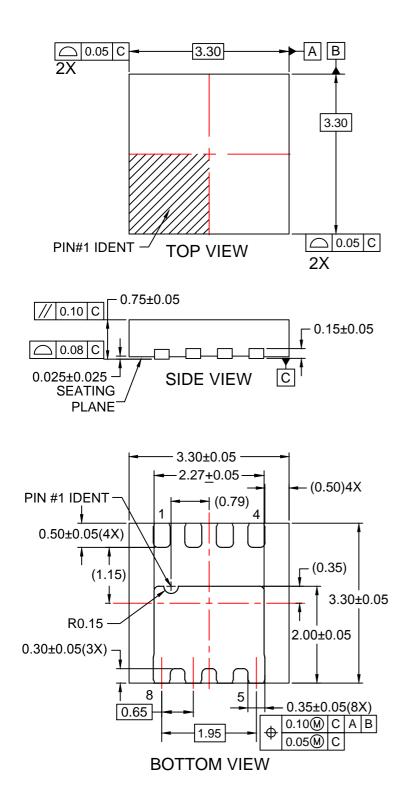
SyncFET Schottky body diode Characteristics

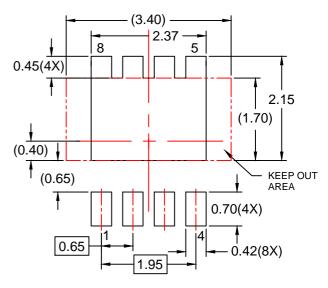
Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MoSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 13 shows the reverse recovery characteristic of the FDMC7672S.


Figure 13. SyncFET body diode reverse recovery characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.





NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-240.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN
- E. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. BURRS OR MOLD FLASH SHALL NOT EXCEED 0.10MM.
 F. DRAWING FILENAME: MKT-MLP08Wrev3.
- G. OPTION A SAWN MLP, OPTIONS B & C PUNCH MLP.

RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MLP08Srev3.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC